Error Estimation and Control for ODEs
نویسنده
چکیده
This article is about the numerical solution of initial value problems for systems of ordinary differential equations (ODEs). At first these problems were solved with a fixed method and constant step size, but nowadays the general-purpose codes vary the step size, and possibly the method, as the integration proceeds. Estimating and controlling some measure of error by variation of step size/method inspires some confidence in the numerical solution and makes possible the solution of hard problems. Common ways of doing this are explained briefly in the article. Running Title: Error Estimation
منابع مشابه
The Effect of Estimation Error on Risk-adjusted Bernoulli GEWMA Control Chart in Multistage Healthcare Processes
Background and objectives: Risk-adjusted Bernoulli control chart is one of the main tools for monitoring multistage healthcare processes to achieve higher performance and effectiveness in healthcare settings. Using parameter estimates can lead to significantly deteriorate chart performance. However, so far, the effect of estimation error on this chart in which healthcare ...
متن کاملAn efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملNordsieck representation of high order predictor-corrector Obreshkov methods and their implementation
Predictor-corrector (PC) methods for the numerical solution of stiff ODEs can be extended to include the second derivative of the solution. In this paper, we consider second derivative PC methods with the three-step second derivative Adams-Bashforth as predictor and two-step second derivative Adams-Moulton as corrector which both methods have order six. Implementation of the proposed PC method ...
متن کاملA Posteriori Error Estimation and Global Error Control for Ordinary Differential Equations by the Adjoint Method
In this paper we propose a general method for a posteriori error estimation in the solution of initial value problems in ordinary differential equations (ODEs). With the help of adjoint sensitivity software, this method can be implemented efficiently. It provides a condition estimate for the ODE system. We also propose an algorithm for global error control, based on the condition of the system ...
متن کاملDefect Sampling in Global Error Estimation for ODEs and Method-Of-Lines PDEs Using Adjoint Methods
The importance of good estimates of the defect in the numerical solution of initial value problem ordinary differential equations is considered in the context of global error estimation by using adjoint-equation based methods. In the case of solvers based on the fixed leading coefficient backward differentiation formulae, the quality of defect estimates is shown to play a major role in the reli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 2005